Boron Substituted Na3V2(P1 −xBxO4)3 Cathode Materials with Enhanced Performance for Sodium‐Ion Batteries
نویسندگان
چکیده
The development of excellent performance of Na-ion batteries remains great challenge owing to the poor stability and sluggish kinetics of cathode materials. Herein, B substituted Na3V2P3-x B x O12 (0 ≤ x ≤ 1) as stable cathode materials for Na-ion battery is presented. A combined experimental and theoretical investigations on Na3V2P3-x B x O12 (0 ≤ x ≤ 1) are undertaken to reveal the evolution of crystal and electronic structures and Na storage properties associated with various concentration of B. X-ray diffraction results indicate that the crystal structure of Na3V2P3-x B x O12 (0 ≤ x ≤ 1/3) consisted of rhombohedral Na3V2(PO4)3 with tiny shrinkage of crystal lattice. X-ray absorption spectra and the calculated crystal structures all suggest that the detailed local structural distortion of substituted materials originates from the slight reduction of V-O distances. Na3V2P3-1/6B1/6O12 significantly enhances the structural stability and electrochemical performance, giving remarkable enhanced capacity of 100 and 70 mAh g-1 when the C-rate increases to 5 C and 10 C. Spin-polarized density functional theory (DFT) calculation reveals that, as compared with the pristine Na3V2(PO4)3, the superior electrochemical performance of the substituted materials can be attributed to the emergence of new boundary states near the band gap, lower Na+ diffusion energy barriers, and higher structure stability.
منابع مشابه
Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries.
Sodium-ion batteries are considered as prime alternatives to lithium-ion batteries for large-scale renewable energy storage units due to their low cost and the abundance of sodium bearing precursors in the earth's mineral deposits. In the current work, a 3D NASICON framework Na3V2(PO4)3/carbon cathode electrode with 20-30 nm Na3V2(PO4)3 nanoparticles uniformly encapsulated interconnecting one-d...
متن کاملPolyanion‐Type Electrode Materials for Sodium‐Ion Batteries
Sodium-ion batteries, representative members of the post-lithium-battery club, are very attractive and promising for large-scale energy storage applications. The increasing technological improvements in sodium-ion batteries (Na-ion batteries) are being driven by the demand for Na-based electrode materials that are resource-abundant, cost-effective, and long lasting. Polyanion-type compounds are...
متن کاملA promising Na3V2(PO4)3 cathode for use in the construction of high energy batteries.
High-energy batteries need significant cathodes which can simultaneously provide large specific capacities and high discharge plateaus. NASICON-structured Na3V2(PO4)3 (NVP) has been utilised as a promising cathode to meet this requirement and be used in the construction of high energy batteries. For a hybrid-ion battery by employing metallic lithium as an anode, NVP exhibits an initial specific...
متن کاملElectrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کاملScalable synthesis of Na3V2(PO4)3/C porous hollow spheres as a cathode for Na-ion batteries
Na3V2(PO4)3 (NVP) has been considered as a very promising cathodematerial for sodium-ion batteries (SIBs) due to its typical NASICON structure, which provides an open and three dimensional (3D) framework for Na migration. However, the low electronic conductivity of NVP limits its rate capability and cycling ability. In this study, carbon coated hollow structured NVP/C composites are synthesized...
متن کامل